skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Michail, Joseph M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The dust emission polarization spectrum—how the polarization percentage changes with wavelength—serves as a probe of dust grain properties in star-forming regions. In this paper, we present 89–214μm polarization spectrum measurements obtained from SOFIA/HAWC+ for three star-forming clouds: OMC1, M17, and W3. We find that all three clouds have an overall decreasing polarization percentage with increasing wavelength (i.e., a “falling polarization spectrum”). We use SOFIA and Herschel data to create column density and temperature maps for each cloud. We fit for the slope of the polarization spectrum at each sky position in each cloud, and using the Pearsonrcoefficient, we probe each cloud for possible correlations of slope with column density and slope with temperature. We also create plots of slope versus column density and slope versus temperature for each cloud. For the case of OMC1, our results are consistent with those presented by J. Michail et al., who carried out a similar analysis for that cloud. Our plots of polarization spectrum slope versus column density reveal that for each cloud there exists a critical column density below which a falling polarization spectrum is not observed. For these more diffuse sight lines, the polarization spectrum is instead flat or slightly rising. This finding is consistent with a hypothesis presented 25 yr ago in a paper led by R. Hildebrand based on Kuiper Airborne Observatory data. This hypothesis is that regions shielded from near-IR radiation are required to produce a sharply falling polarization spectrum. 
    more » « less
    Free, publicly-accessible full text available March 4, 2026
  2. Abstract The polarization spectrum, or wavelength dependence of the polarization fraction, of interstellar dust emission provides important insights into the grain alignment mechanism of interstellar dust grains. We investigate the far-infrared polarization spectrum of a realistic simulated high-mass star-forming cloud under various models of grain alignment and emission. We find that neither a homogeneous grain alignment model nor a grain alignment model that includes collisional dealignment is able to produce the falling spectrum seen in observations. On the other hand, we find that a grain alignment model with grain alignment efficiency dependent on local temperature is capable of producing a falling spectrum that is in qualitative agreement with observations of OMC-1. For the model most in agreement with OMC-1, we find no correlation between the temperature and the slope of the polarization spectrum. However, we do find a positive correlation between the column density and the slope of the polarization spectrum. We suggest this latter correlation to be the result of wavelength-dependent polarization by absorption. 
    more » « less
  3. Abstract The time-variable emission from the accretion flow of Sgr A*, the supermassive black hole at the Galactic center, has long been examined in the radio-to-millimeter, near-infrared (NIR), and X-ray regimes of the electromagnetic spectrum. However, until now, sensitivity and angular resolution have been insufficient in the crucial mid-infrared (MIR) regime. The MIRI instrument on JWST has changed that, and we report the first MIR detection of Sgr A*. The detection was during a flare that lasted about 40 minutes, a duration similar to NIR and X-ray flares, and the source's spectral index steepened as the flare ended. The steepening suggests that synchrotron cooling is an important process for Sgr A*'s variability and implies magnetic fields strengths ~ 40–70 G in the emission zone. Observations at 1.3 mm with the Submillimeter Array revealed a counterpart flare lagging the MIR flare by ≈10 minutes. The observations can be self-consistently explained as synchrotron radiation from a single population of gradually cooling high-energy electrons accelerated through (a combination of) magnetic reconnection and/or magnetized turbulence. 
    more » « less
    Free, publicly-accessible full text available January 20, 2026